Sunday, April 27, 2008

TAT variant with magnetic particles

My last posting about targeted alpha therapy discussed the expense of preparing a sample of radioactive actinium, aside from which, targeted alpha therapy should be a very effective and specific and hopefully affordable cancer therapy. Quentin Pankhurst of the London Centre for Nanotechnology has been working with particles of iron oxide, which has very low toxicity and can be attached to antibodies just like the actinium atoms in cages. Iron oxide can be magnetized so each particle can be a permanent magnet. A magnetized particle can then be detected from outside the body using a weak EM field generated by a hand-held device, or it can be heated with a strong EM field, to the point of destroying the cancer cell .

By combining the iron oxide particle with an antibody for the HER2 protein found in breast cancer cells, Pankhurst should be able to achieve the same specificity and effectiveness that Sloan-Kettering has gotten with radioactive actinium, at vastly lesser cost. In order to commercialize this and related applications, Pankhurst has founded Endomagnetics, a start-up based in Houston, Texas.

Why should iron oxide be so much less expensive than radioactive actinium? "Iron oxide" is the chemical name for rusty metal, which is easy to make and store, and readily available in auto scrap yards everywhere. Actinium-225, the isotope used for TAT, has a half-life of ten days, so you can't make a big batch and store some for later use. According to this website at the Oak Ridge National Laboratory: "The actinium-225 is formed from radioactive decay of radium-225, the decay product of thorium-229, which is obtained from decay of uranium-233. The National depository of uranium-233 is at ORNL, and we have developed effective methods for obtaining thorium-229 (half-life 7340 years) as our feed material to routinely obtain actinium-225."

Wednesday, April 23, 2008

RepRap replicates 100%

This story in Computerworld is a couple weeks old, and I should be working harder to keep up. Vik Olliver, a RepRap hacker in New Zealand (and probably the hardest-working RepRap hacker in the world), has now fabricated all the parts of the RepRap except the Z flag, which can be cut out of the side of a beer can. This includes only the parts that it makes sense to print on a RepRap, so it doesn't include stepper motors, nuts and bolts, pieces of metal and wood (e.g. threaded rods). But it's an important step.

I myself am still drooling a bit over some of the hobbyist CNC stuff. There's a guy in New Mexico who sells these things on eBay. He sells aluminum ones (like this) and ones made of MDF, which I believe is a sort of particle board. Many low-end CNC machines are in the $2000 to $5000 ballpark, whereas he sells these in the $300 to $600 ballpark. It should be pretty easy to swap out that orange router and swap in an extruder.

I was thinking a bit last night about how to drive those steppers, since the offerings on eBay don't include the drive electronics. Digikey sells a stepper motor sequencer chip, the L297, which would be used to drive some power MOSFETs. The L297 just needs an input to choose clockwise or counter-clockwise, and a clock pulse to advance a step in that direction, so you need six GPIO lines to control the three motors, and one more to turn on/off the router or squirt goop out of the extruder. There's some very good information on stepper motors and driver circuits here.

It occurs to me that I've never posted the Sourceforge download page for the RepRap design files. A shocking oversight, given that I want to see the project succeed and proliferate.

Monday, April 21, 2008

Targeted alpha therapy

This is something I read about in 2001, and it still seems to be one of the most promising ideas in cancer therapy. The treatment involves two molecular objects bound together. One is an antibody that gets taken into a cancer cell. The other is a radioactive actinium-255 atom which has a ten-day half-life, and then decays through a few different products, releasing four alpha particles, which rip through the cancer cell and kill it. Luckily alpha particles have only enough energy to destroy one cell, and then they run out of steam and become inert helium nuclei.

At Sloan-Kettering where this work was done, they applied for a patent. A clinical trial was conducted in 2002 with favorable results. There have also been some clinical trials in Australia, I believe.

As far as I am aware, this is a fantastic treatment, due to its being extremely specific, and is applicable to a wide range of cancers, but it's not used much. I would imagine the actinium-255 must be prepared through some process that would probably be very expensive. It would be great if some more affordable alternative could be found. It seems to me that were advanced nanotech available today, some suitable replacement for the radioactive actinium nucleus might be possible.

Nifty stuff over at Machine Phase blog

A couple of interesting things from Tom Moore's Machine Phase blog. One is a comparison between a carbon buckyball and a geometrically similar structure made from DNA using (what appears to be) Paul Rothemund's DNA origami technique. Note the teeny dot in the middle, that's the carbon buckytube.

The other is very interesting because it combines nanotech with my interest in 3d printers in an unexpected way. Specifically it's about using a 3d printer to print parts for an atomic-force microscope, using selective laser sintering. These microscopes typically cost hundreds of thousands of dollars. Hopefully this approach will make them much more affordable for universities, and perhaps high schools and even individual hobbyists.

The white plastic pieces were the things printed with the 3d printer. I always thought of SLS as something done with metal, but I guess it works with plastic too.